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This is the second of three papers in which we study global convergence

ABSTRACT

of iterations using linear information for the solution of nonlinear equatioms.

In Wasilkowski [{78] we proved that for the class of all amalytic scalar complex

functions having only simple zeros there exists no globally convergent stationary

iteration using linear information. Here we exhibit a nonstationary iteration

using linear information which is globally convergent even for the multivariate
and abstract cases. This demonstrates the strength of nonstationary iteratiom.
.

In Wasilkowski [79] we shall prove that any globally convergent iteration using

linear information has infinite complexity even for the class of scalar complex

B
polynomials having only simple zeros.
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1.1

1. INTRODUCTION

We deal with the iterative solution of a nonlinear operator equation F = 0
where F is an analytic multivariate or abstract function having only simple
zeros. Most iterations are only locally convergent, i.e., the sequence {xi}

generated by an iteration is convergent to a zero a assuming that the starting

points are "sufficiently close" to o. In practice it is very hard to verify this
assumption and one therefore wants to use globally convergent iterations. All

known globally convergent stationary iterations for the class of analytic operators

s

use nonlinear information. Since most iterations of practical interest use linear

information, we would like to know whether there exist globally convergent itera- ,

tions using linear information. From Wasilkowski (78], we know that no stationmary

iteration using linear information can be globally convergent even for the scalar

case. In this paper we pose and affirmatively answer the following problem:

Do there exist nonstationary iterations using linear information which

are globally convergent?

We construct a globally convergent nonstationary iteration which is an
interpolatory iteration. The i-th step of this iteration requires the computa-

tion of F(xo),r'(xo),...,F(i-l)

(xo) and the solution of a polynomial equation
of degree i-1. Since, in practice, we cannot solve exactly a polynomial equa-
tion this iteration is primarily of theoretical interest. It establishes the
power of nonstationary over stationary iteration.

In a forthcoming paper, Wasilkowski [79],we shall prove that any iteration
using linear information has complexity equal to_ infinity. More precisely,

we shall prove that for any such iteration there exists a scalar polynomial




1.2

having only simple zeros such that the cest of cqmputing a better approxima-
tion than the starting ome is arbitrarily large. This exhibits the impor-
tant difference between the concepts of convergence and complexity. The
class of linear information operators supplies enough knowledge to find a
globally convergent iteration but its cost can be arbitrarily high. Hence
from a practical point of view, the class of linear information operators 1s.
too "weak" for the solution of nonlinear equations. Therefore we have to
use stronger (i.e., some nonlinear) information in order to guéfantee global
convergence and finite complexity.

We summarize the contents of this paper. For the reader's convenience,
in Sections 2 and 3 we deal only with iterations without memory. The exten-
sion to the case with memory is given in Sectiom 4. In Section 2 we give a
very general definition of information and iteration without memory. We
recall the definition of globally convergent iterations and define the con-
stant of global convergence. In Section 3 we prove that for the class 31
of all analytic operators having simple zeros, the constant of global con-
vergence is no larger than 1/2 for any iteration. Furthermore we proved
that only "one-point" iterations can be globally convergent. We also exhibit
an iteration which is globally convergent with the constant of global conver-
gence no less than 1/3, which means this iteration has a "large" domain of
convergence, In the Appendix we prove global convergence of all iterations

we exhibit in Sections 3 and 4.
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2.1

2. TINFORMATION AND ITERATIONS

In this section we introduce a very general definition of information
and iteration. We also discuss very briefly the definition of globally

convergent iterations (for more detailed discussion see Wasilkowski [78])

and define the constant of global convergence. For the reader's comnvenience,

Sections 2 and 3 deal with iterations without memory. Iterations with memory ‘<

are considered in Section 4. :
i

Let BI’BZ be two Banach spaces over the complex field € which have i
i
dimension

N=dimB =dimB), LSN<+w, f

2’

Let H be the class of all operators F :Dp © B, ~ B, analytic in D and let
be a subset of H which consists of operators having only simple zeros. Let

S(¥) be the set of all zeros of F. Consider the nonlinear equatiom

(2.1) F(x) =0, F €Y.

To motivate our definition of an iteration consider first Newton itera-

tion for a scalar case,

Example 2.1

Let Bl = Bz =C. Fora given approximation x, of a solution of F(x) = 0

we construct the sequence of approximations [xil by the formula

(2:2) xp,; " 0GR (R LE () = x, - B (x) T F(x,).

;5 This means that x tequires the information [P(xi) »F! (xi)]. Denote

i+l
R(£,x) = [F(x),F'(x)] and tr(x) = §(x; R(F,x)). Thus X, depends on Xy»




(2.3 X - '#F(xi_l) = WF(*F(xi_z)) = .. = *F ° 'F °...0° tF(xo),

and on the information

2 4) mi(F:xo) - [F(xo) »F! (xo) aF(xl) oF! (xl) geee ’F(xi- 1) »F! (xi' 1) ].

We denote (2.3) and (2.4) as

(205) xi - Qi(xo; mi(Faxo))' .

We define an iteration by generalizing the information ﬂti in (2.4) and

. [ - -
j.DLj H X By € be a func

tional which is linear with respect to the first argument, i.e.,

the function q)i in (2.5) as follows. Let L

Lj(c1F1+c2F2 X)) = cle (I-‘l,x) + chj (Fz,x) whenever x € DFI n DFZ. We assume

that L, (F,x) is undefined for x ¢ DF' Then a linear informationm operator R,

3

Dl'D,RCHX B, - (]:u, is defined as

1

(2.6) R(F,xo) = [LI(F,zl) ,LZ(F,zz),...,Ln(F,zn)], W €H, ¥xg € DF’

where z, " x, and Z1 " Ck+1(zl; I‘I(F’zl)’LZ(F’ZZ)’""Lk(F’zk)) for some

functions Cj’ j=12,...,n, Let - [ﬂi} be a sequence of linear informa-
n
tion operators, %, :D, SH x B, »~ Lgor 1= 1,2,... + Let x_  be an
i mi 1 0
approximation of a solution of (2.1). We construct a sequence of approxima-

tions {xi} by the formula

n
where @, : D C B, X C i, B, are operators. Then the sequence 3 = {p, ] is
i 1 1 i

®
called an iteration using the information sequence M. Let ¥(M) be the class

of all such iterations.




Let & = {'Jti} be information and let ¢ = {cpi} € 3(M be an iteratiom.

We shall say 5 is a one-point iteration iff for any i = 1,2,..., the points

zl,zz,...,zn given by (2.6) are equal to Xge We prove in Theorem 3.2 that
i

any globally convergent iteration is a ome-point iteration. We shall say

; is a stationary iteration iff there exist a linear information operator 2

and an operator ¢ such that
mi(F’xo) - "R(F’xi.l)’ xi -q’i«o; mi(Fon)) = ¢(x1_1; m(f’x1°1))’ Vi - 1!2"0"

for any F € § and x, € DF' We shall say 5 is nongtationary iff ¢ is not a
stationary iteration.

In most papers iterations are defined in a way that exhibits the depen-
dence of xi' on some previously computed x 5 j < i, For example, see Traub
[64], ortega and Rheinboldt [70],and Traub and Wozniakowski [78]. Our defini-
tion of an iteration generalizes these definitions. In Wasilkowski [79] we
shall establish a negative result for even this very general class of itera-

tions.
We are now ready to define global convergence of an iteration. Let

J(asR) &f (x € B, : [| x=a|| < R} denote the ball of center & and radius R.

For any F, F € 3, and any o« € S(F) define

(3D.) = inf || ox||
¥ F x€D,

as the distance of o to the boundary aDF of the domain DF' Let
3,0 = {J Kaub_ (o)
€S (F)

vhere b > 0. Let c-p 63('.'_!) be an iteration. Let A be the set of real numbers

a such that for any F € J and any x, € B(a,F) the sequence {xi}, x, = 9 (xgi R (F,xp)),




is well-defined and lim X, € S(F). We shall sayc = c(;:,s) is the constant

f—co

of global convergence of P for the class 9 iff

sup A if A # 8,

0 otherwise.

Note that if there exists F from § with finite &F(a) then c@,i}) €[0,1].

1f RF(a) = 4o for any F € 3, then c($,3) is zero or infinity (with the con-
vention 0°®w = 0), The set B(c,F) is a convergence domain of E) for F since
taking any starting point from B(c,F) we get convergence of {xi} to a solution

of F =0,

Definition 2.1

We shall say that an iteration @ is globally convergent for the class 9

c(® > 0. 8




3.1

“ 3. GLOBALLY CONVERGENT ITERATION

i

In this section we study global convergence of iterations for the class ’

31 of all analytic operators F from H having only simple zeros. We prove f
some general properties of globally convergent iterations and we also exhibit [
an iteration which is globally convergent. )

Recall that N, N < +®, is the dimension of the spaces Bl and Bz. (See

also Remark 3.l.) Let {a i=1,2.
N

Let t = Z tjal 5 We begin with
?
i=1

} be a basis for B

1,1°%1,27°°*%; N i’

Theorem 3,1

For any iteration E

c@3) s 1/2. ] f.

Proof
Suppose on the contrary that there exists an % and a c_p Ei(ﬁ) with

c = c(‘?é,sl) > 1/2. Let
N

2
F(t) = (tl-l)az’l + z tjaz,j'
i=2

Then F is an entire operator having only simple zeros, o ~a and a = -a
’

Consider two operators

F(t) - for || t-e || < 2 Ii a1’1|| ,

Py (t) =
undefined otherwise,

i=1,2. Then F,F, €9, S(F,) = {oy]} and R“'i(a‘) = 2] ’1,1"' 1=1,2. i




and y, = @, (Y55 % (F5>¥y)). Then {xi} and {yi} are well-defined and tend to

a and -4, respectively., Thus, there exists an index i, such that g = x

0
for 1 = 0,1,...,i, and yio“ A xi0+1. Since mio” (Fyoxy) = mio“ (Fysyy) we

i

get ¥, 41 "X 41 which is a contradiction. a
0 0
We now give a necessary condition on an iteration to be globally conver-

gent for the class 31

Theorem 3.2

1f ; is a globally convergent iteration for the class 31 then o is a

one-point iteration. B

Proof

The proof of Theorem 3.2 is similar to the proof of Theorem 4.l in
Wasilkowski [78]. Therefore we only sketch the proof.

Suppose on the contrary that there exists = {'Ri} and ;: = {coi} 63(“31)

which is globally convergent for 31 and is not one-point. Let

N N
o

F(t) = F(z tsal,s) = (1:1-1)a2’1 + L tsaz’s.
s=] s=2

Then F is an entire function from 31 having only one zero o = a Let

1,1°

X, = (0, Since &F(a) = 4 o, there exist integers k and jo, '10 € [l,nk] such

i =

]

defined by mi and F.) lLetm = NZni. For Yl’Yz’“"Ym-o-l € C define
i=}

that z are

0 for any 1 <k and j= 1,.,.,n,, and zk # 0. (The points 2t
Kk i 3 b

Since ¢ > 1/2, then X =¥, " 0 € B(c,Fl) n B(c,FZ). Let x, = coi(xo; 'J!i(Fl,xo))

o




m+1

) r -
ws(t) = az,s ‘-' Vrts, s 1,2,--0,“.
r=1
N
Let W(t) = Z Ws(t:). Then there exist YiaYpse oo Yy such that W # 0 and
i=1

‘Ri(F+w,0) = ﬁli(F,O) for 1 = 1,2,...,k. For g > 0, define

F(t) + (e  for || el < |2X [,
o} Jo

F (t) =
undefined otherwise.

Of course, F € 31 for sufficiently small 0. Furthermore, F(t) ==3, | +
]

Z 2 s 1 z yrts] has a zero which tends to zero as ¢ goes to zero.
s=2 r'l .

Thus, for sufficiently small o, X, = 0 € B(c((-p,sl) ’Fc) which means that

vy = coi(O; mi(Fa,O)) are well-defined for any i = 1,2,... . Since ‘Jti(Fa,O) =
mi(F,O), zl; g DF . This means that Yie is undefined which is a contradiction. B
0

a
We now exhibit a globally convergent nonstationary iteration for the

class 31. Let

F @ 19}

mn’o(F’xo) = [F(xo)’F'(xo)1°“: (x0>)°

Thus !Rn is a linear information operator. Let -ﬂ.lo = [‘Rn 0}. For given Xy
3
Xg € D, define

p(0-1)

3.1 w O(x) 0(x xo) F(xo) + F' (xo) (x-xo) + eee +T!TT)—' (xo) (x-xo)n.l.

Let S(Wn 0) be the set of all zeros of Wn 0 Similarly to Traub and Wozniakowski
’ »

[76] we define the interpolatory iteration I, = {In 0], 2,00 Ty, oFsxp)) =

x, € S(wn 0) with some criterion of the choice of a zero X, . Thus, for different
1

criteria we obtain different interpolatory iterations. We propose the foliowing

criterion for the choice of a zero X, of W Let

n,0°




dist(xg,SM, ) 1f SO, o) # B

3.2) d_ . (x,) =
0,070 + @ otherwise.

Define

3.3 6, o) = Lz €50, o) : [l zxgll s 4, gxp) + jé}'

N
Let B, = lin{al,az,...,aN}. For any x € By, x = z t:jaj, tj € C, we define

1
x € R2N as =1

X = [re(t;),im(t;),re(t,),im(E,) ;.. re(ty) ,im(t) .

Let < be the lexical order on RZN, i.e., for any by, b, € RZN, b, # by,

b we write b1 < b2 iff there exists an integer

g = By 1By peeeesby o0)s

<
k € [1,2N] such that bl,k bz,k and bl,i = bz,i for i < k. Then we can define

an order on Bl' Namely,

< - ~
(3.4) x, x, iff x, < xz.

% L 4 *
1f scwn) is nonempty then Gn’o(xo) has a minimal element z , z = 2 (n,xo,ﬁtn,o(l-',xo))

in the sense of order <. We define

%
z (n’xotmn’o(F’xo)) if S(wn 0) # ﬁ’

I (x,; 2 (F,x,)) =
,070% "a,0 0 0 otherwise.

Then TO = {In 0} is a nonstationary interpolatory iteratiom and TO € 3(?!0).
»

Theorem 3.3

Iteration ?0 is globally convergent for the class 31 and

- 1
(305) c(IO’sl) 23.




3'5

Proof
See Appendix. a
We do not know whether (3.5) is sharp. We also do not know what is the
maximal constant of global comnvergence of iterations for the class 31. From

Theorem 3.1 and (3.5) we can only conclude

Corollary 3.1

3 <sup _sup_ c(®3) s-;-. .
T P@®

Remark 3.1

In this section we have assumed that the spaces B1 and Bz are finite
dimensional. We need this assumption in order to assure that '.‘tn’ 0(1“,x) =
[F(x),F' (x),...,F(n-l) (x)] is representable by a finite number of linear func-

tionals. For the infinite dimension case, di.m B, = dim B, = + &, Stn 0(‘r",x)
]

1 2
is representable by infinite number of linear functionals. Defining the

iteration EO analogously to (3.1)-(3.4), it is possible to verify that Theorem

3.3 still holds. |

z
!
|
|
|
l
|
|




4.1

4. ITERATIONS WITH MEMORY

In this section we extend all previous results to iterations with memory.
Since we do not know any globally convergent iteration with memory for the
multivariate case we assume in this section that B1 = Bz = ¢, f.e., N=1,
We present two globally convergent iterations for different classes. The
first of these is the generalization of .i(f' it is globally convergent for the
class 31. The second is based on increasing the size of memory; it is
globablly convergent for the class of all entire functions from 31

Let m, m > 0, be an integer. Let L, be a functional defined as in Sec-

k|
tion 2. A linear information operator with memory J, ft: D'Jt CHX (Em"'l - Cn,

is defined as

(4-1) m(raxo:x_ls"'sx_m) - [Ll(r’zl)’LZ(F’zn)""’Ln(F’zn)]’ ¥F €H,

Wo,x.l’ono’x-m E D.F’

where z) = X5, Zy ™ X 5seeesZy ) = X and 2, . = Ck+1(zl’zz"”’zm+1;
L1(Fl’z1)’1‘2(""2)’“?’%“”9) for some functions Cj’ j = m2,m+3,...,0.

Let
0= =3

n
be a sequence of linear informatiom operators with memory, ‘Ri : D!R CHX (EN'I - C 1.

i
Let XgaX_jaeeerX be distinct approximations of a solutiom of (2.1). We con-

struct a sequence of approximations {xi] by the formula

(4.2) x, = cpi(xo,x_l,...,x_m; mi(F,xo,x_l,...,x_m))

mt1+n

vhere @, : D cd L . @ are functiomals. Then 3 = [(pi] is called an
i

iteration with memory using information sequence %. Let 3m(ﬁ) be the class

of all such iteratioms.

TS




We now extend the definition of global convergence. For any iteration

9 @ € T'I_im(it), let A be the set of all real numbers a such that for any F € §
and any distinct points XgaX_preeerX p satisfying X € B(a,F) and

Ix_j-xol <c dist(xo,S(F)), the sequence [xi}, x, = cpi(xo,x_l,...,x_m;
mi(F,xo,x_l,...,x_m)), is well-defined and lim x, € S(F). We shall say

L)

c= c(t.p,ﬁ) is a constant of global convergence of 5 for the class & iff

sup A 1f A ¥ 0,

0 otherwise.

Definition 4.1

We shall say that an iteration 9 is globally convergent for the class §

1ff
c(e,Y > 0. [ ]

For this case it can also be showm that for the class 31 defined in

Section 3,
c@®3) 3 ey,
An example of globally convergent iteration for the class 31 is provided
by the generalization of EO iteration. Namely, let
R (F,x..x X ) = [F(x) P (%) er e PO (x ) Fix )0 (x )
n’m ] o’ _1""’ -t o ’ 0 gerey o ? -1 9 _1 yevey
r®D (%_1)seeesF(x_)WF'(x_)seee,F (o=1) (x )1
(= [mn(f:xo) ’mn(rox_l).-”amn(rax_m) .

Thus !ln n'Dg CHX C™! L C™*! vhere

! n,m

4.3) r=r(n,m = a(ml)-1,




4'3

Let now !Rm = {mn,m}n' For distinct KgsX_psecesX_ o let Wn'm = wn,m('; xo,x_l,....x_m)

be an interpolatory polynomial of degree at most r satisfying

@) W% 5 =r®(x ) for k=0,1,...,0-1 and 3 = 0,1,...,m.

3 b

Let s(wn m) be the set of all zeros of wn m and let
»

G.3) 4, (xp) = dist(xy,S0, ). !

Define 3

- . lge .
4.6) G (xp) {z € SOV, o) * |2 "ol $d, a(xg) + = }

* %
and let z=z2 (n,m,xo,ﬂln m(F,xo,x_l,...,x_m)) be the minimal element from
9

G, n(xg) in the sense of the order relation <. Then i
?

2 1f SO, ) # B

, 4
In’m(xogx-l’- . o’x-m’ mn’m(F’xosx-li“"x.m)) o othewise’

. olir+l
m° ¢

is a functional, I - and
]

is an iteration with memory, Em € 3m( .

Theorem 4,1

For any m, m 2 1, {iteration Em is globally convergent for the class 31 and
e(T )y 2 L 8
m’sl 4°

Proof

See Appendix. |




We now present a globally convergent iteration for the class 32 of all

entire functions. For fixed n, n 2 2, let

L (xl) ’._.’p(xi-l)’.,,,p(n.l) (xi-l)]'

R, (Fxp) = [p(xo),...,r(“‘l)(xo) R IR IR Ly

Define
g % P ape R Foxg)) = L, Xy 1eXygeeeeaXgi R (Faxg))e

Then iteration Gn’ c-pn = {cpi n}i’ requires the computation of F(xi_l),
?

(n-1)

(]
F (xi_l),...,P (xi-l) per st/:ep.

Theorem 4.2
For any n, n 2 2, the iteration c-pn is globally convergent for the class
J, of all entire functions from 3;, i.e., c@n,gz) = 4o, : ]
This theorem can be proven analogously to Theorem 3.3 and therefore its

proof is omitted.




.

We prove Theorems 3.3 and 4.l. We begin with the scalar case, i.e.,

B, =B, = ¢, N=1, LetF € ‘}1 and n,m (m 2 0) be integers. Let

1 2

(A.1) Rn’m(x) = Rn,m(X; xo,x_l,...,x_m) = F(x)-wn’m(x).

Then
L 1% %1
(A.2) Rn,m(x) - }:.(')(x-x_j) {{ ...I F(r+1) (x°+tn_1(x_1-xo)+...+tr(x-x_m))dtrdtr_1
.o .dto.
where

r=r(n,m = a(m+l)-1,

For any F € 31 and o € S(F) define

. -1 e(®
W) oM =ACaD = s | IR for k = 2,3,... .
x€(a, ) ke

Let q € (0,1) and XgoX_1seeesX € J(a,) be distinct. Following the proof

technique of Theorem 2.1 of Traub and WoZniakowski [76] we prove

Lemma A.1l
If
A, (D )™
(A.4) Az(l")ql' + 3 <1

then the polynomial wn.n has a zero z = z(xo,x_l,...,x.m) such that
A.5) |z-a| = qlxo-al. e

Proof

We can assume x, # a. Since F(x) = F'(a)(x-a) + Rz’o(x; a) and

F(x) = wn’n(x) - Rn,m(x) wve get




(A.6) x-F'(a)-lwn 2% = HX) TRl (a)'l{Rn’m(x) = Ry olx @l

Thus Wn n

»

has a zero in J(a,qlxo-al) iff there exists a fixed point of
(A.7) x = H(x), x € J(a,qlxo-al).

We first verify that H(Xa,q|xy-a]) < J(aalxg-af). Let |x-a| < q]xy=a.

From (A.2) and (A.3) we get

m m
2
|o-B(X)| Ar_'_l(l")jl:]olx-x_j |n+A2(I') Ix—alz < A:l__._l(l")jl:'(|)(|x-ar|+|c:w--x_j I)n+A2(l') |x=a|
< &, (D (alxg-al+|xy=ah (] qren® r
AL (D @|xy-al+|x)-a j_o(q +1) +A,(Na|x,-olq

an-1
< alxyral lhyy (D (™™ LT 4y nqr

1
A (D"
= ql"o'“l ¢ P

+ Ay (DT} < qxp-af.

Thus B(J(a,q|xo-a|) c J(a,qlxo-al). From the Brouwer fixed point theorem,

see e.g., Ortega and Rheinboldt [70, p. 161], it follows that there exists

a zero of the polynomial L in J(a,qlxo-cl). This proves (A.5). [ ]
Let DF be the domain of F, F € , such that DF $ C. Then for any

a€ES(F), R = R.F(a) is finite. From Cauchy's formula there exists a comstant

M = M(F,qa) such that
r(")gaz M

@A.n |} o | £33, k=0,1,... .
L ] . B

Traub and WoZniakowski [76] established




A.3

Lemna A.2
&F(a)
Let I' < 7 Then there exists n, such that (A.4) holds for every
nz2 n, with
Rp(a)
q= M(a,F)r -and T = n(m+l)-1. [ ]
For fixed L,a,F define
(A.8) Y(n,m,K) =  sup sup (O -W, f (85 xgox_qseeesx ]

xoeJ(aQL) Csx_ls""x.meJ(xo’K)

Lemma A.3

()
1) Ifm-OandL<RF3 then

()
lim y(n,0, ) = 0.
e
Rp(a)
(1) 1fm 21 and L < A then
RT(a)
lim v(o,m,~7—) = 0. [ ]

n=—-e®
Proof

letm= (0, Denote R = RF(cx). from (A.2) we get

(n) (n)
v, odh s B o  wwp, B Q)< e R
SRR O R ced(a, vy

From Traub and Wozniakowski [76] we know that

l(_n)(Q.I s...-
(IM)MI

which implies

P S e S

A Is G 1 A R T

R ——




Lemma A.4

Proof of Theorem 3,3 for N = 1

M

(A.9) y(n,O,I—;) s —Lm (§)n - R0

) 2R-3L “2R-3L

R" (1 3L4R

3R

Since R/ (2R-3L) < 1, the right-hand side of (A.9) tends to zero. Hence (i)
is proven.

For m 2 1, it can be similarly shown that y(n,m,R/4) = 0((-2—1!%5-1-.)").

Since R/ (2R-4L) < 1, we get (ii). This completes the proof. B
Lemma A.3 states that the polynomials wn m uniformly approximate F., It
?

is also easy to show that wl'l n tends to F'. Since o is a simple zero of F,
’

then either re F'(x) or imF'(x) is distinct from zero in a ball J(Q,F*) for

some 1"*,1"* = F*(a,F) > 0. Without loss of generality we can assume that

- re F' > 0. Then for sufficiently large n, re W!'l lll(x) also does not vanish in
£

S
J= J(a,{—). Thus, re wn m(x) has at most one solution in J. From this and
s
Lemma A.2 we conclude that Wn - has exactly one zero in y. This is summarized

in

There exists 1"*, I‘* = l"*(a,l') > 0, and an integer n,, n, = .nz(a,F), such

that for any n 2 n, the polynomial W, n has exactly one zero in J(a,I‘*/Z). a8
2

Consider first F € J) with D, # C, i.e., Rp(a) <+=, Yo €S(F). Let

x, € n(%,r). Define S(F,xy) = {a € S(F) : [x,-a = dist(x,,5(F))]} = {ogsoyseeera,]

b —r e g e e - = -

where ao is the minimal element from S(F,xo) in the sense of (3.4). Of course,

R (ap)

Ixo-aol < ==3——. We prove that the sequence {xn} generated by T

tends to @,..

0 0
Let ¢ be a positive number such that ¢ S% min[l"*(a.r) ra € S(F.xo) 1.

From Lemmas A.1l, A.2 and A.4 there exists n,, o, = nl(c) such that for an 2 o,




(o

(1+qn)|x o:ol <

where

RF(a)
max —
d&(? ’xo) ‘ M(o,F)

af 1
W=

and the polynomial Wn o(x; xo) has zeros z? which satisfy
?

(A.10) Izj-ajl <q |x,a,| S € for 3 =0,1,...,s.

Furthermore z) 1is the only zero of wn o(x; xo) which belongs to J(a,; €). Let
’

3 3

(ay)
B(xy & J(xo,}F—:;L) \ aesLaJ (0
»Xy

and

o =g(e) = inf{|f(x)| :x € B(xo)}.

Of course ¢ > 0. From Lemma A.3 we get

(xq)
RF30)}$O‘

sup{lf(x)-wn’o(x; xo)l 1x € J(xgs 3

for sufficiently large n, o 2 1n, = n,(e). Note that |wu o(x)l 2

|[F(x)]| - ll?(x)-wn o(x)| zg >0. Thus W, o does not have a zero in B(x)).
]

Let n, = max{,nl,nz'}. For n Z n,, X € U J(a,¢). Note that

df a€s (F)
h = dist(x,,S(F) \ S(F,x,)) > |x0- ol Then for an arbitrary ¢ € (0,5(h-|xo- 0I))

X € U I(a,€)

a€s (F,x,)

we get

for sufficiently large n. Therefore if S(F,x) = [GO} is a singleton set

then |x - 0, $ ¢ wvhich implies that :1.-1: x, = .




A.6

Suppose now S(F,xo) - {ao,al,...,as} is not a singleton. Then for

sufficiently large n,
- (2D n
Gy, 0> S SMy o) N Jxg, A4y [xpmap ) = {z4,275.-052.3

where

lz;- j' < qnlxo-aol and zg < zg for § = 1,2,...,8.

Define n. as an integer such that

0
1

(A-Il) q < .
no 2 lxo-ao ':Fo

stnce |x -a.| = |a~2%| § |25-x,| s |x,-a.| + |zh-a,| for 3 = 0,1 s, then
07 373 ivo 0 373 PRanEeaT

n 1
lzo-xol - dn’o(xo) < 2qn|xo-ao| <$

n - B
for large n, n > n,. Thus z, € Gn,o("o)' see (3.3), which means that X, =2

Hence lim L - o, which completes the proof for the case DF #C.

n- e
Consider now an entire fumction F € 3, i.e., D = C. Let abe an
element from S(£f). Define
F(x) if x € J(a,l&]a-xo]),

f(x) =
undefined otherwise.

Then 7 € 3,05 # €, a € S(F) < S(F) and Rg(o) = &|avxy|. Stnce x; € BGP)
then the sequence {yn}, Vo ™ Iu o(xo; !!ln o(f-",m:o)), is convergent and

limy € s(f) C S(F)., Since % (F~ x)=R (F,x)),y = and therefore
g n,0" 70 n,O’O'nxﬂ

1im L € S(F). This completes the proof of Theorem 3.3 for the case N=1, B
=




A.7

Proof of Theorem 4.1

Following the proéf of Theorem 3.3 for N = 1 and applying Lemma A.3(ii)
instead of (i), we easily get the proof of Theorem 4.1. | | '

To prove Theorem 3.3 for the case N # 1, consider an analytic operator

F, P & 31. Then for

.12) R, (GO & NCEN & ren - Wy o(xs Xp)

we have

1 n-1l
(A.13) Rn,O(x) - {F(n) (x0+t(x-xo))(x-x0)n (nlL:l-;),.— dt,

see e.g., Rall (69, p. 124]. Define

(k)
-1

x€X
It is obvious that Lemmas A.l to A.4 also hold for this case with the modulus
replaced by the norm || - ||. The detailed proofs of Lemmas A.l and A.2 for
m = 0 can be found in Traub and WozZniakowski [76].

Following the proof of Theorem 3.3 for N = 1 with the modulus replaced

by || - ||, we easily get the complete proof of Theorem 3.3.
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